Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Appl Polym Sci ; 140(5): e53406, 2023 Feb 05.
Article in English | MEDLINE | ID: covidwho-2231430

ABSTRACT

During the global spread of COVID-19, high demand and limited availability of melt-blown filtration material led to a manufacturing backlog of N95 Filtering Facepiece Respirators (FFRs). This shortfall prompted the search for alternative filter materials that could be quickly mass produced while meeting N95 FFR filtration and breathability performance standards. Here, an unsupported, nonwoven layer of uncharged polystyrene (PS) microfibers was produced via electrospinning that achieves N95 performance standards based on physical parameters (e.g., filter thickness) alone. PS microfibers 3-6 µm in diameter and deposited in an ~5 mm thick filter layer are favorable for use in FFRs, achieving high filtration efficiencies (≥97.5%) and low pressure drops (≤15 mm H2O). The PS microfiber filter demonstrates durability upon disinfection with hydroxyl radicals (•OH), maintaining high filtration efficiencies and low pressure drops over six rounds of disinfection. Additionally, the PS microfibers exhibit antibacterial activity (1-log removal of E. coli) and can be modified readily through integration of silver nanoparticles (AgNPs) during electrospinning to enhance their activity (≥3-log removal at 25 wt% AgNP integration). Because of their tunable performance, potential reusability with disinfection, and antimicrobial properties, these electrospun PS microfibers may represent a suitable, alternative filter material for use in N95 FFRs.

2.
J Occup Environ Hyg ; 19(5): 295-301, 2022 05.
Article in English | MEDLINE | ID: covidwho-1740663

ABSTRACT

Ventilation plays an important role in mitigating the risk of airborne virus transmission in university classrooms. During the early phase of the COVID-19 pandemic, methods to assess classrooms for ventilation adequacy were needed. The aim of this paper was to compare the adequacy of classroom ventilation determined through an easily accessible, simple, quantitative measure of air changes per hour (ACH) to that determined through qualitative "expert judgment" and recommendations from the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the American Conference of Governmental Industrial Hygienists (ACGIH)®. Two experts, ventilation engineers from facilities maintenance, qualitatively ranked buildings with classrooms on campus with regard to having "acceptable classroom ventilation." Twelve lecture classrooms were selected for further testing, including a mix of perceived adequate/inadequate ventilation. Total air change per hour (ACH) was measured to quantitatively assess ventilation through the decay of carbon dioxide in the front and rear of these classrooms. The outdoor ACH was calculated by multiplying the total ACH by the outdoor air fraction. The classrooms in a building designed to the highest ASHRAE standards (62.1 2004) did not meet ACGIH COVID-19 recommendations. Four of the classrooms met the ASHRAE criteria. However, a classroom that was anticipated to fail based on expert knowledge met the ASHRAE and ACGIH criteria. Only two classrooms passed stringent ACGIH recommendations (outdoor ACH > 6). None of the classrooms that passed ACGIH criteria were originally expected to pass. There was no significant difference in ACH measured in the front and back of classrooms, suggesting that all classrooms were well mixed with no dead zones. From these results, schools should assess classroom ventilation considering a combination of classroom design criteria, expert knowledge, and ACH measurements.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , Humans , Pandemics , Schools , Universities , Ventilation/methods
SELECTION OF CITATIONS
SEARCH DETAIL